

Outline

- 1 | Basic Info
- 2 | Envelope Design
- 3 | Ventilation System
- 4 | Heating & Cooling System
- 5 | Performance & Cost Data
- 6 | Renewable Energy
- 7 | Lessons Learned

Basic Info

Audain Art Museum

Two-story **Class AA** museum showcasing Canadian art

4750 m² (51,130 ft²)

Completed in June 2016

Designed to reach gold in LEED Canada (New Construction & Major Renovations '09)

Programme:

"Permanent and temporary exhibit galleries, workshops, a public lobby, a gift shop, education space, offices, and a suite for a live-in building manager"

Site Plan

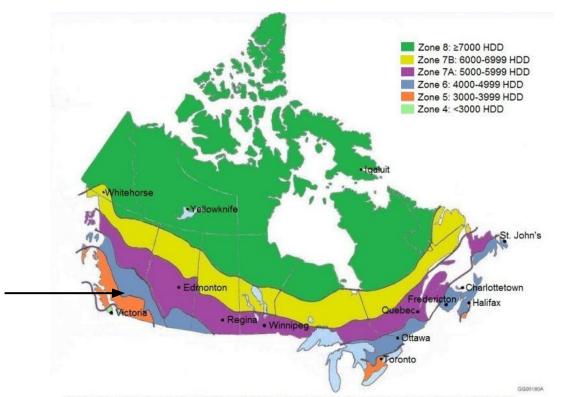
Whistler Blackcomb, Whistler, BC, Canada

Climate

Humid continental climate (Dfb)

Cold & wet winters

Drier & warm summers


4,180 heating degree-days below 18°C (64°F)

Average 11 days over 30°C (86°F)

Average 24 days under -10°C (14°F)

From: https://en.wikipedia.org/wiki/Whistler,_British_Columbia

Climate

Reproduced with the permission of the National Research Council of Canada, copyright holder. The colour coding has been added by NAIMA Canada.

Classes of Control for Museums

Table 1. How to Describe Your Collection

Maximum fluctuations and gradients in controlled spaces			
Short-term [*] fluctuations and space gradients	Seasonal adjustments in system set point	Class of control	
±5% RH ±2°C	RH no change. Up 5°C and down 5°C.	AA Precision control, minimal seasonal changes to temperature only.	
±5% <u>RH</u> ±2°C	Up 10% RH and down 10% RH. Up 5°C and down 10°C.	A Good control, some gradients or seasonal changes.	
±10% <u>RH</u> ±2°C	RH no change. Up 5°C and down 10°C.	A Good control, seasonal change to temperature only.	
±10% <u>RH</u> ±5°C	Up 10% <u>RH</u> and down 10% <u>RH</u> . Up 10°C (but not above 30°C) and down as low as necessary to maintain <u>RH</u> control.	<u>B</u> Control, some gradients plus winter temperature setback.	
Within range 25–75% RH year-round. Rarely over 30°C, usually below 25°C.		<u>C</u> Prevent all high risk extremes.	
Reliably below 75% RH.		<u>D</u> Prevent damp.	
	e any fluctuations less than the seasonal adjustmer	nt; however, some fluctuations are too	

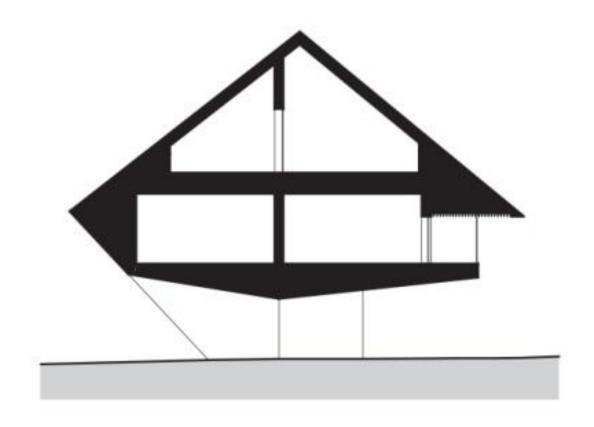

Class AA Museum

Table 1. How to Describe Your Collection

Short-term [*] fluctua and space gradient:	s Seasonal adjustments in system set point	Class of control	
±5% <u>RH</u> ±2°C	RH no change. Up 5°C and down 5°C.	AA Precision control, minimal seasonal changes to temperature only.	
+5% RH	Up 10% RH and down 10% RH	Δ	
±2°C	Up 5°C and down 10°C.	Good control, some gradients or seasonal changes.	
±10% <u>RH</u> ±2°C	RH no change. Up 5°C and down 10°C.	∆ Good control, seasonal change to temperature only.	
±10% <u>RH</u> ±5°C	Up 10% <u>RH</u> and down 10% <u>RH</u> . Up 10°C (but not above 30°C) and down as low as necessary to maintain <u>RH</u> control.	<u>B</u> Control, some gradients plus winter temperature setback.	
Within range 25–75% RH year-round. Rarely over 30°C, usually below 25°C.		<u>C</u> Prevent all high risk extremes.	
Reliably below 75% RH.		<u>D</u> Prevent damp.	

Envelope Design

Transverse Section

Envelope R-Values

<u>Wall</u> R-23.3 (RSI-4.1)

Conduction is 32% lower than baseline

<u>Roof</u> R-55 (RSI-9.7)

Conduction is 62% lower than baseline

Windows
Triple-glazed

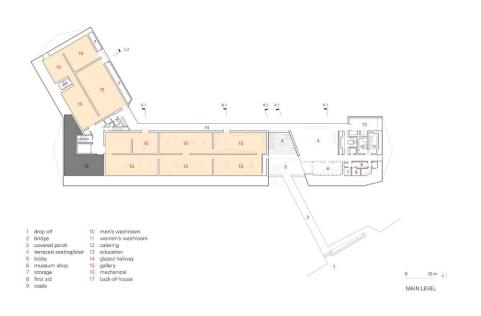
Conduction is 53% lower than baseline

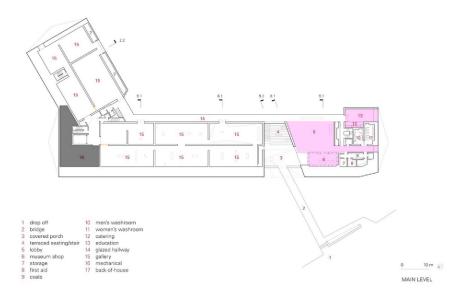
Ventilation System

Two Systems

Exhibit Gallery Spaces

Class AA Requirements




Non-Gallery Spaces

General Requirements

Exhibit Gallery Spaces

Non-Gallery Spaces

Exhibit Gallery Spaces

Non-Gallery Spaces

Exhibit Gallery Spaces

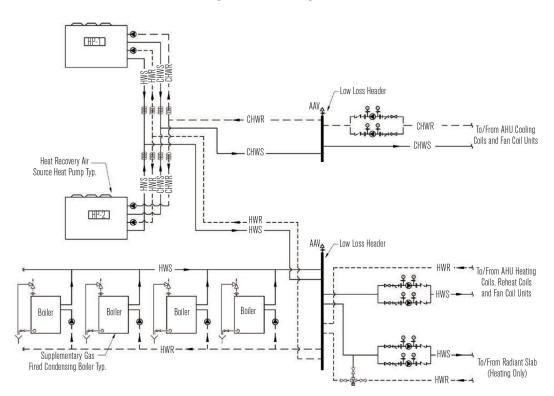
MERV 8 Pre-Filter & Carbon Filter

Energy recovery ventilator

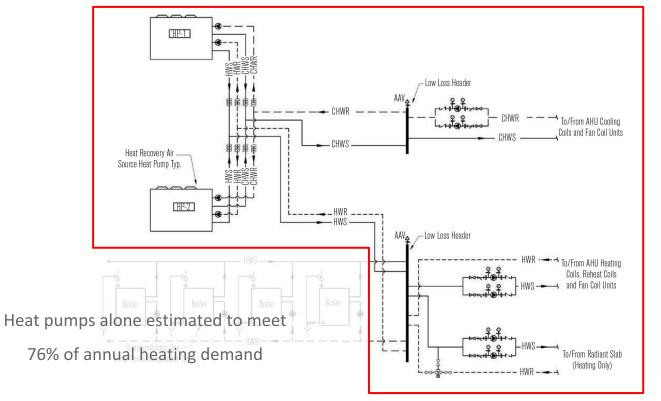
x2 AHUs

Electrostatic Air Filter (eq. MERV 15)

Non-Gallery Spaces


MERV 8 filter
Energy Recovery Wheel
Four-Pipe FCUs
MERV 13 filter

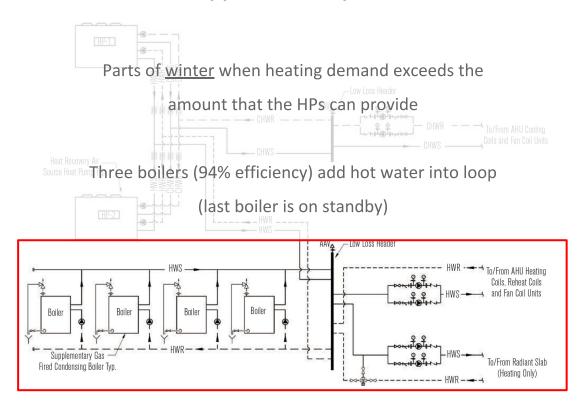
Heating & Cooling System


Requirements

	GALLERY SPACES NON-GALLERY SPACES		ERY SPACES
	Year-Round (Class AA)	Summer	Winter
Temperature	21°C / 70°F	23°C / 73°F	21°C / 70°F
Allowed Temp Change	± 1°C / ± 2°F		
Relative Humidity	50%	< 60%	40%
Allowed RH Change	± 5%	-	± 10%
Terminal Air Velocity	0.1 m/s	0.8 m/s	
Controls	Temp, Humidity, CO ₂ sensors in each gallery	Temp, Humidity, CO ₂ sensors in each fan-coil zone	

Hydronic System

Main System



AHUs & FCUs for cooling

AHUs & FCUs for heating

Radiant heating

Supplemental System

Deconstructing the System

Centralised system

Hydronic heating/cooling system

Ventilation integrated into AHUs

Primary Equipment	Heat Pumps
Fuel	Electricity
Heat Source & Heat Sink	Water loop connected to HPs
Energy Carrier	Water to air
Energy Transfer Medium	Water pipes
Terminal Device/Equipment	Fan coil units to grilles

Deconstructing the System: Gallery Space

Ventilation and heating/cooling is integrated

ERV <u>partially conditions</u> the air passively

AHU <u>fully conditions</u> the air (AHU sized for heating and cooling)

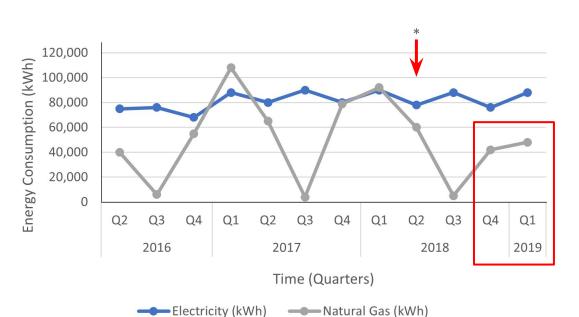
Large ducts <u>distribute</u> the fresh air and conditioned air

Deconstructing the System: Non-Gallery Space

Ventilation and heating/cooling is separated

Energy recovery wheel <u>partially conditions</u> the air actively

Ducts <u>supply</u> fresh air


4-pipe FCU uses hot water and chilled water to <u>fully condition</u> the air

Performance & Cost Data

Metered Energy Consumption Over Time

*Discovered in March 2018 that "supplementary" boilers were operating even when not needed

Site EUI

2017 Q1 - Q4 (before boiler discovery)

Annual Energy Consumption:

[Electricity] 338,000 kWh

[Natural Gas] 256,000 kWh

[Total] 594,000 kWh

Site EUI:

 $594,000 \text{ kWh} / 51,130 \text{ m}^2 = 11.6 \text{ kWh/m}^2/\text{yr}$

2,026,728 kBtu / 550,360 ft2 = 3.7 kBtu/ft²/yr

2018 Q2 - 2019 Q1 (after boiler discovery)

Annual Energy Consumption:

[Electricity] 330,000 kWh

[Natural Gas] 155,000 kWh

[Total] 485,000 kWh

Site EUI:

 $485,000 \text{ kWh} / 51,130 \text{ m}^2 = 9.5 \text{ kWh/m}^2/\text{yr}$

1,654,820 kBtu / 550,360 ft2 = 3.0 kBtu/ft²/yr

Source EUI

2017 Q1 - Q4 (before boiler discovery)

Source Multiplier:

[Electricity] 338,000 * 3.15 = 1,064,700 kWh

[Natural Gas] 256,000 * 1.09 = 279,040 kWh

[Total] 1,343,740 kWh

Source EUI:

 $1,343,740 \text{ kWh} / 51,130 \text{ m}^2 = 26.3 \text{ kWh/m}^2/\text{yr}$

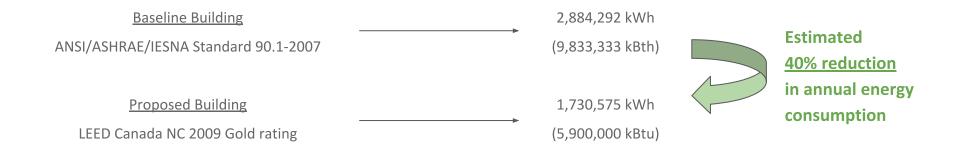
4,584,840 kBtu / 550,360 ft2 = **8.3 kBtu/ft²/yr**

2018 Q2 - 2019 Q1 (after boiler discovery)

Source Multiplier:

[Electricity] 330,000 * 3.15 = 1,039,500 kWh

[Natural Gas] 155,000 * 1.09 = 168,950 kWh


[Total] 1,208,450 kWh

Source EUI:

1,208,450 kWh / 51,130 $\text{m}^2 = 23.6 \, \text{kWh/m}^2/\text{yr}$

 $4,123,231 \text{ kBtu} / 550,360 \text{ ft2} = \frac{7.5 \text{ kBtu/ft}^2/\text{yr}}{1.5 \text{ kBtu/ft}^2/\text{yr}}$

Energy Efficiency

Achieved primarily through energy savings in **space heating** (70% of savings)

Space heating now makes up 31% of proposed building energy usage

Costs VS Carbon Emissions

Electricity rate (\$0.0462/kWh) VS Gas rate (\$0.056/kWh)

Hybrid system has annual energy savings of \$2,837

BUT...

This system costs \$155,000 more than boiler-only system
(ROI is longer than equipment's life expectancy)

BUT!

British Columbia uses hydroelectric power generation!!!

Building estimated to save 216,529 kg (476,364 lb) CO₂e

compared to the baseline model

Renewable Energy

Hydroelectric Energy Generation

Hydroelectric Energy Generation

BC Hydro and Power Authority operates 32 hydroelectric facilities

Hydroelectric energy generation provides 92% of British Columbia's electricity

Carbon emissions can be greatly reduced by selecting an electric system:

Hydroelectric: 0.09 kg CO₂e/kWh

Natural gas: 0.185 kg CO₂e/kWh

From: https://en.wikipedia.org/wiki/BC_Hydro

Lessons Learned

In designing systems for museums, we have to consider not only the occupants, but also the art collections.

Art needs to be housed in a consistent environment to prevent damage from temperature or humidity. Also needs to be undisturbed as much as possible. Therefore, **commissioning** is important and should occur before any of the art collection arrives. (In this project, temperature and RH were recorded for 14 days before any exhibits were allowed to be set up.)

Mechanical systems don't last as long as the building, so at some point, different parts will fail. The failure must not damage the art. (Ex. water services are located as far away from galleries as possible and leak detectors are added to detect and prevent major leaking issues.)

Don't ignore the data!

Commissioning should be done properly.

It really shouldn't take 2 winters to realise that the supplementary boilers were operating when not needed AND operating at a higher temperature than designed for. The natural gas consumption in quarter 4 of 2018 was half of the amount in quarter 4 of 2017!

Perhaps performing better than the baseline energy model hid the fact that there were errors that did not align with the designed intent.

Consider how power is generated before selecting the system. There may be a more environmentally-friendly solution.

Since British Columbia generates power through hydroelectric means, the carbon emissions can be greatly reduced by selecting an electric system.

Hydroelectric: 0.09 kg CO₂e/kWh

Natural gas: 0.185 kg CO₂e/kWh

This would save a lot of carbon emissions by using electric heat pumps, since it is estimated that the heat pumps would consume 75% of the heating energy consumption.

Information and images in this case study presentation was primarily gathered from the July 2020 ASHRAE Journal unless otherw

AUDAIN ART MUSEUM | a case study

48-798 HVAC & Power Supply in Low Carbon Buildings

Jamie Ho